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Abstract. In this study we consider the classification of emblematic ges-
tures based on ensemble methods. In contrast to HMM-based approaches
processing a gesture as a whole, we classify trajectory segments compris-
ing a fixed number of sampling points. We propose a multi-view approach
in order to increase the diversity of the classifiers across the ensemble by
applying different methods for data normalisation and dimensionality
reduction and by employing different classifier types. A genetic search
algorithm is used to select the most successful ensemble configurations
from the large variety of possible combinations. In addition to super-
vised learning, we make use of both labelled and unlabelled data in an
active learning framework in order to reduce the effort required for man-
ual labelling. In the supervised learning scenario, recognition rates per
moment in time of more than 86% are obtained, which is comparable
to the recognition rates obtained by a HMM approach for complete ges-
tures. The active learning scenario yields recognition rates in excess of
80% even when only a fraction of 20% of all training samples are used.

1 Introduction

It is undisputed that gestures constitute an important modality in human-human
and human-machine interaction. Therefore, a multitude of approaches for recog-
nising different types of gestural expressions – ranging from hand-arm gestures
to full-body motion – have been proposed in the literature [11].

In this study we focus on the aspect of mapping the motion parameters of
the relevant body parts (e.g. the gesturing hand or the upper body including
head and arms) to a gesture or action category, assuming that body motion
has already been captured successfully and has been converted to a stream of
3D trajectory data. In contrast to related approaches, we make use of classifier
ensembles for recognition as these are known to usually improve recognition
performance in a wide range of pattern recognition tasks [8]. Additionally, we
rely on both labelled and unlabelled data in an active learning framework for
classifier training in order to reduce the manual labelling effort.

In order to be able to use a sufficiently diverse set of classifier types we
decided not to consider gesture recognition as a problem of recognising variable
length trajectories, which is usually solved by applying hidden Markov models
(HMMs) [11] or dynamic Bayesian networks [20]. Rather, we address the problem
by classifiying trajectory segments comprising a fixed number of sampling points.
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For both active learning and for building powerful classifier ensembles, con-
sidering different views on the data or the classification problem is highly ben-
eficial. Considering the issue of diversity on two levels of abstraction, we first
create different feature representations of the trajectory data obtained by ap-
plying different subspace transforms. Second, different classifier types are used
for constructing heterogeneous ensemble classifiers, as the diversity of homoge-
neous classifier ensembles usually comes at the cost of a large number of base
classifiers, which in turn requires that many different views on the data can be
obtained by sampling in feature or sample space [10]. In combination, by con-
sidering different feature representations, different classifier types, and different
parameterisations of the two, a considerable variety of classification approaches
is available for combination within an ensemble. Eventually, the most promising
configurations are selected by applying a genetic search algorithm.

2 Related Work

The field of gesture recognition in general deals with the problem of recognis-
ing meaningful expressions conveyed by human motion [11]. Many approaches
focus on either the recognition of hand-arm gestures or on the interpretation
of full-body motion, usually referred to as “action recognition” [14]. The recog-
nition of hand-arm gestures, which is mostly considered for artificially crafted
gesture alphabets such as sign languages [12], involves first the capturing of the
dynamic movement of the relevant body parts and second the analysis of the
resulting temporal trajectories. Capturing dynamic motion of human body parts
constitutes a challenging computer vision problem (cf. e.g. [15]), which may be
simplified using visual markers or depth cameras [19].

For analysing time-series data in general and such obtained from human ges-
tural expressions in particular, HMMs are most widely used today [11]. Other
common approaches include dynamic Bayesian networks [20] and conditional
random fields [22]. Interestingly, to the authors’ best knowledge the problem
of dynamic gesture recognition has not been addressed yet using learning ap-
proaches based on ensemble classifiers.

The combination of multiple base classifiers within a classifier ensemble has
been shown to improve classification performance for a wide range of pattern
recognition problems [8, 16]. In order to build a successful classifier ensemble,
a set of base classifiers has to be created that is as diverse as possible while
achieving satisfactory individual performances. Then the decisions of the base
classifiers have to be combined into a final classification decision of the ensemble.

Classical ensemble creation techniques like bagging and boosting combine
base classifiers of the same type but with different parameterisations by using
different subsets or differently weighted versions of the training data for parame-
ter estimation [10]. Random subspace sampling applies a similar strategy to the
original feature space by randomly selecting different feature subsets [6]. The
quite popular random-forest technique combines dataset sampling known from
bagging with the use of decision trees as base classifiers [2].
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In order to obtain the final decision of a classifier ensemble from the individual
classifier outputs, a variety of techniques can be applied [24], such as majority
voting or boosting, where classifier outputs are usually combined as a weighted
average. The most general combination method is generalised stacking, where
the problem of combining classifier outputs is considered as another classification
problem [23].

As fully supervised learning of gestures requires a large amount of labelled
training data, it is favourable to reduce the labelling effort by employing ac-
tive learning techniques. In the concept of active learning it is assumed that
the classifier is trained initially based on a relatively small amount of labelled
training data. It then selects from a large set of unlabelled data the most infor-
mative samples and requests their labels from the user (“oracle”) by performing
a query. A broad overview of active learning approaches is given in [18]. For sin-
gle classifiers, the strategy to select samples close to the decision boundary, for
which the classification result is uncertain, is shown to be optimal in [13]. This
concept is thus termed “uncertainty sampling” [18]. For a combination of sev-
eral classifiers, such as the ensemble classifiers regarded in this study, the “query
by committee” algorithm is introduced in [5], which selects those samples from
the unlabelled data for which the results of the individual classifiers are most
dissimilar [18]. In this study we will rely on a selection strategy which combines
these two approaches.

3 Ensemble Classifiers for Gesture Recognition

The classifier ensemble used for gesture recognition in this study combines differ-
ent classifier types with different views on the data, i.e. different sets of features,
in order to obtain a high degree of diversity within the ensemble.

The 3D positions of the head and the hands of the gesturing person were ob-
tained from multiocular image sequences as described in detail in [15]. According
to [15], various features such as the coordinates of the hand positions relative to
the head, velocity values, or trajectory curvatures are extracted. As the recog-
nition result is desired to be independent of the position and orientation of the
person in 3D space, additional variants of all features based on their changes
over time (“delta features”) are determined. These extraction steps result in an
overall number of 90 features.

Based on the extracted features, we compute different views on the data by a
combination of different preprocessing steps. The feature values are normalised
to the same order of magnitude using as a first approach the transformation to
the interval [−1,+1] based on the corresponding minimum and maximum values
and as a second approach the division of each feature by its mean absolute value.
The dimensionality of the feature vectors is reduced by two methods: principal
component analysis (PCA) [17] and independent component analysis (ICA) [7].

For the classifier ensembles, three types of classifiers are used: a linear,
quadratic, or cubic polynomial classifier (PC) [17], a multi-layer perceptron
(MLP) [10], and a support vector regression (SVR) [1]. The MLP is used with
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only one hidden layer, where the number of hidden neurons is chosen such that
the number of network parameters does not exceed 20% of the number of train-
ing samples and also remains smaller than one-half of the dimension of the input
data. The SVR is used rather than the more commonly applied support vector
machine (SVM) as it allows to compute the confidence bands of the estimated
class-specific probabilities, which are much less straightforward to obtain for the
SVM due to its discrete decision function. For a polynomial kernel and a RBF
kernel of the SVR, the γ parameter according to [1] is chosen as the inverse av-
erage scalar product between the training samples [3] and as the inverse squared
average mutual RMS distance between the training samples, respectively.

In the context of ensemble learning, it is generally assumed that using clas-
sifiers with dissimilar behaviour within an ensemble leads to an increased recog-
nition performance [16]. In this study we quantify the diversity of the classifiers
based on the cross-correlation measure and the rate of double faults as defined in
[9], which both consider the respective class assignments of the individual sam-
ples and decrease with increasing diversity. These diversity measures can only
be computed for pairs of classifiers. For more than two combined classifiers, we
estimate the overall diversity by the average of the pairwise diversities.

The selection of the most promising ensemble configurations is based on a
multi-criteria optimisation using a genetic search algorithm [4], considering the
correlation coefficient, the rate of double faults, and the average classification
error. This optimisation results in a three-dimensional Pareto front which com-
prises all Pareto-optimal solutions, where a solution is Pareto-optimal if no other
solution exists for which all three criteria obtain a smaller value. Classifier en-
sembles consisting of L base classifiers are selected from those comprised by the
Pareto front based on three criteria:

1. Select the classifier ensemble with the smallest average classification error
under the constraint that its cross-correlation coefficient does not exceed the
minimum value by more than 5%.

2. Select the classifier ensemble with the smallest average classification error
under the constraint that its rate of double faults does not exceed the mini-
mum value by more than 5%.

3. Select the classifier ensemble with the smallest rate of double faults under the
constraint that its cross-correlation coefficient does not exceed the minimum
value by more than 10%.

In order to keep the computational effort of the classifier ensembles in a rea-
sonable range, only ensembles consisting of L = 3, 5, and 7 base classifiers are
regarded. For each number L three classifier ensembles are selected according to
the above criteria.

It is assumed that each of the L base classifiers determines a class assignment
yl and a decision vector dl = (dl1, dl2, . . . , dlK) with

∑K

j=1
dlj = 1. Five methods

to determine the overall ensemble decision are applied to the selected classifier
ensembles:

1. Majority voting.
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2. Sum of decision values. The class assignment is given by the maximum of
the vector dens =

∑L

l=1
dl.

3. Weighted sum of decision values. The class assignment is given by the maxi-
mum of the vector dens =

∑L

l=1
wT

l dl. The elements of the weight vector wl

are given by wli = 1/σli with σli as the renormalised confidence as defined
in [3] of the i-th decision value of the l-th classifier.

4. Master classifier for decision values. The class assignment is obtained by
generalised stacking, relying on the output of a “master classifier” which
combines the decision values of the base classifiers. We always use a first-
order PC as the master classifier, leading to dens = Ad∗

L with A as the

coefficient matrix of the PC and d∗

L =
[

dT
1
dT
2

. . . dT
L

]T
as the concatenated

decision vectors of the base classifiers.
5. Master classifier for decision values and renormalised confidences. The mas-

ter classifier determines the ensemble decision dens based on the decision
values and the renormalised confidences of the base classifiers, such that

dens = Ad∗

σL with d∗

σL =
[

dT
1
σT

1
. . . dT

L σT
L

]T
.

4 Active Learning of Gestures

As a first step, a supervised training of the ensemble classifier is performed based
on the initial labelled training set. During active learning, a sample is selected
from the set of unlabelled samples and its label is queried if at least one of the
four following conditions is fulfilled:

1. The maximum decision values of all L base classifiers are below a given
threshold θ1.

2. The differences between the highest and the second-highest decision value of
all L base classifiers are below a given threshold θ2.

3. The renormalised confidence values [3] of all L base classifiers exceed a given
threshold θ3.

4. The class assignment is different for all L base classifiers.

Condition 1 corresponds to the approach of uncertainty sampling. Condition 2
also selects unlabelled samples for which no clear class assignment can be ob-
tained. Condition 3 relies on the renormalised confidence values, which have been
found in [3] to denote how closely a new sample resembles the samples already
used during the training process. Condition 4 selects unlabelled samples with a
high degree of dissimilarity among the class assignments of the base classifiers
and is thus a variant of the query by committee approach [5, 18].

5 Experimental Evaluation

The 3D trajectory data used in this study were extracted from enblematic ges-
tures in a multi-camera framework. The labelled data set was adopted from [15],
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Fig. 1. Examples of the gesture classes (from left to right) “circle”, “come here”,
“down”, “go away”, “point”, “stop”, “up”, “horizontal wave”, and “vertical wave”.
The extracted 3D trajectories have been reprojected into the image (from [15])

Table 1. Number of instances and samples per gesture class

Circle Come here Down Go away Point Stop Up Hor. wave Vert. wave

# instances 95 92 92 96 86 83 88 89 79
# samples 4000 2015 2056 1941 1573 1549 1651 3497 5617

where a detailed description is provided and the data are utilised for the clas-
sification of gestures using HMMs.1 The gestures considered are performed by
16 different persons. According to [15], the raw 3D trajectories are smoothed
using impulse-based resampling, which leads to a curvature-dependent distance
between the resampled trajectory points obtaining low values when the local
curvature of the trajectory is high. Table 1 lists the nine different classes, the
number of instances (performed gestures) per class, and the number of samples
(feature vectors corresponding to overlapping windows) per class.

Based on a series of tests of a variety of classifier configurations, the most
appropriate window length corresponds to 8 subsequent resampled points. For
the training data, the offset between two subsequent samples amounts to 1 step,
while 4 steps are used for the test data. A number of 22 favourable base clas-
sifiers defined by the utilised normalisation technique, dimensionality reduction
method, and classifier type were identified. In this context, the number of PCA
components was chosen such that the reconstruction error corresponds to 0.1 and
0.01, respectively. The number of ICA components was set manually [7], where
the “virtual dimensionality” [21] was used as an upper limit. The degree of the
PC was set to 1, 2, and 3, where higher degrees were restricted to manageable
sizes of the weight matrix. The SVR approach was used with polynomial kernels
of degree 2 and 3 and with RBF kernel, and the number of hidden neurons of
the MLP was determined automatically (cf. Section 3).

For all three selection criteria according to Section 3, the recognition rates
of ensembles of size 5 are generally better than those of ensembles of size 3 and
comparable to those of ensembles of size 7. The best ensembles of size 5 obtained
with the genetic search algorithm are listed in Table 2.

For the evaluation of the ensemble classifiers, an 8-fold cross-validation was
performed, where for each run the samples associated with 14 persons were used
for training and the samples associated with the remaining 2 persons for testing.

1 The trajectory data set is accessible at http://patrec.cs.tu-dortmund.de.
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Table 2. Determined ensembles of size 5. “BC” stands for “base classifier”. The num-
bers after “PCA” and “ICA” denote the reduced number of dimensions. The digits
after “PC” and “Poly” denote the polynomial degree

Selection criterion Base classifiers
(cf. Section 3) ID Normalisation Dim. red. Classifier type

Cross-correlation (1) BC1 Division by mean PCA59 PC2
BC2 Min-max interval ICA59 PC2
BC3 Division by mean ICA59 PC2
BC4 Min-max interval PCA150 SVR Poly2
BC5 Division by mean PCA240 MLP

Rate of double faults (2) BC1 Min-max PCA120 SVR RBF
BC2 Min-max interval ICA569 SVR RBF
BC3 None ICA471 SVR RBF
BC4 Min-max interval ICA569 SVR Poly3
BC5 Min-max interval PCA150 SVR Poly2

Combination (3) BC1 Division by mean PCA200 SVR RBF
BC2 None ICA471 SVR RBF
BC3 Min-max interval ICA59 PC2
BC4 Division by mean ICA59 PC2
BC5 Min-max interval PCA150 SVR Poly2

The recognition rates obtained are shown as box plots in Fig. 2. For all config-
urations considered, the median recognition rate of the best ensemble classifier
is higher than that of the best base classifier. However, the difference is always
smaller than the uncertainty intervals of the recognition rates. The master classi-
fier which takes into account the base classifier decision values and renormalised
confidence values yields the highest recognition rate for ensemble selection meth-
ods 1 and 3 and the second highest for ensemble selection method 2. The median
recognition rates of the best ensemble classifiers are higher than 86%. Note that
all recognition rates are per moment in time and not per trajectory.

5.1 Active Learning Scenario

For active learning, the data set is divided into an initial training set comprising
5% of all training samples associated with 3 different persons, a larger set of
unlabelled samples associated with 11 persons used for active learning, and an
independent test set consisting of samples associated with 2 persons. These data
sets are permuted 8 times in order to facilitate an 8-fold cross validation.

We found that for the small training sets encountered during active learning
the most favourable ensemble classifier consists of a SVR with RBF kernel, a
SVR with polynomial kernel of degree 2, and a quadratic PC, combined by a
weighted sum of their decision values with the inverse renormalised confidence
values as weights (method 3 according to Section 3). The feature values were
normalised to the interval [−1, 1] based on their minimum and maximum values.
Using PCA, the dimensionality of the samples was reduced to 120 and 80 for the
SVR with quadratic polynomial kernel and with RBF kernel, respectively. For
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Fig. 2. Box plots of the recognition rates of the base classifiers (left column) and the
ensemble decisions using different combination methods (right column) for (from top
to bottom) selection criteria 1, 2, and 3. The ensembles correspond to those listed in
Table 2. BC: base classifier; MV: majority voting; SD: sum of base classifier decision
values; WSD: sum of base classifier decision values weighted by inverse renormalised
confidence values; MCD: master classifier for decision values; MCDC: master classifier
for decision values and renormalised confidence values.

the quadratic PC, the number of PCA components was adapted dynamically to
the increasing number of training samples in order to ensure that the coefficient
matrix did not become underdetermined for small sample set sizes, where the
maximum number of PCA components was set to 59. For sample selection from
the set of unlabelled samples according to the conditions listed in Section 4, the
threshold values were set to θ1 = 0.5, θ2 = 0.1, and θ3 = 2. Each time when 500
samples had been queried, the ensemble classifier was re-trained.

The results of the active learning scenario are shown in Fig. 3, where the
solid curve denotes the median recognition rate and the dotted curves the 25%
and 75% quantiles, respectively. The recognition rate saturates at a value of
about 82%± 4%, when a fraction of approximately 30% of all training samples
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Fig. 3. Recognition results obtained in the active learning scenario. The ensemble
classifier consists of a SVR with RBF kernel, a SVR with polynomial kernel of degree 2,
and a quadratic PC.

(including the initial ones) have been used for training. However, the median
recognition rate exceeds a value of 80% already when a fraction of 20% of all
training samples have been used. This behaviour illustrates the efficiency of the
employed active learning approach.

6 Summary and Conclusion

We have investigated the classification of gestures based on ensemble methods
by classifying trajectory segments comprising a fixed number of sampling points.
We have presented a multi-view approach in order to increase the diversity of
the classifiers across the ensemble. In addition to supervised learning, an active
learning framework has been employed in order to reduce the manual labelling
effort. In the supervised scenario, we have obtained median recognition rates per
moment in time of more than 86%. Similar recognition rates in between 84% and
90% are observed for the HMM-based approach in [15] for complete gestures. A
median recognition rate of about 80% has been obtained in the active learning
scenario, using an initial training set of 5% of all training samples. An amount of
further 15% has been selected according to four criteria specifying those samples
for which the class assignment of the ensemble classifier is most uncertain. The
recognition rate saturates at a value of about 82%± 4%. The recognition perfor-
mance observed in the supervised and in the active learning scenario illustrates
that gesture recognition based on the classification of trajectory segments using
ensemble methods is a promising approach that may be applied in various areas,
such as human-robot interaction or non-obtrusive user interfaces.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2007)



10 J. Schumacher, D. Sakič, A. Grumpe, G. A. Fink, C. Wöhler
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