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Abstract. This article presents an adaptive Bayes model for the deci-
sion logic of cascade classifier structures. The proposed method is fast
and robust with respect to multimodal and overlapping distributions and
can be applied to arbitrary stage classifiers with continuous outputs. The
method consists of an adaptive computation of thresholds and probabil-
ity density functions which outperform the threshold based decision. It
furthermore guarantees high detection rates independent of the num-
ber of stage classifiers. Based on this Bayes model different confidence
measures are proposed and evaluated statistically and used for merging
detection windows. The algorithm is applied to the detection of US speed
limit signs under typical driving conditions. Results show that on a single
CPU with 3.3 GHz the proposed method yields single image detection
rates of 97 % with 0.2 false positives per image running at 13 Hz, and
for a different setup a detection rate of 93 % with 0.2 false positives per
image performing with 43 Hz for scanning the whole image (752x480
pixels).

1 Introduction

Robust and fast object detection is applicable to a very large set of computer
vision based applications. This paper presents a machine learning method for
the detection of US speed limit signs. This is a challenging task since strong
consistent features like circles or thick edges are missing, in contrast to circular
signs. Even aspect ratios and digit types vary.

Most systems for US traffic sign recognition build on the work of Viola and
Jones [12, 11] who use strong classifiers composed of weak classifiers boosted [14]
in a classifier cascade with an implicit iterative method for setting thresholds.
The performance of each stage classifier has influence on all subsequent stage
classifiers and is therefore essential for a good overall performance. Most authors
therefore try to reduce the number of stage classifiers. Overett et al. [10] argue
that each stage likely reduces the detection rate and thus use only three to five
stages. Rasolzadeh et al. [3] present a method for the computation of thresholds
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and a histogram based method for a single stage classifier and the RealBoost
Algorithm.

This paper focuses on the cascaded structure and presents a novel modular
approach for an adaptive Bayesian Classifier Cascade. It is shown how the op-
timal decision values and thresholds of these stage classifiers can be computed
with low effort independently of the number and type of stage classifiers while
maintaining high detection rates with low false positive rates. Zaragoza et al.
[4] present an overview of existing confidence measures with probability based
confidences yielding remarkable performance. The proposal is therefore for three
different methods of confidence measures based on the Bayesian approach for
binary classification problems which can be extracted with little effort by fusion
of the confidence values of each stage classifier. The best performing confidence
measure is used for merging different detections into one by means of linear
combination.

This paper is organized as follows. Section 2 explains the algorithm for the
Bayes decision for cascaded classifier structures and propose a confidence mea-
sure depending on the stage classifiers. Different settings of the cascaded Bayes
decision algorithm are evaluated with respect to their detection and run-time
performances in Section 3.1. Additional confidence values are introduced and
compared in Section 3.2.

2 Bayes Decision for Cascaded Classifier Structures

In principle, a cascade classifier is a series of ordered stage classifiers. According
to [11] the decision function of a cascade classifier ho containing hy, .. ., hy stage
classifiers is as follows:

hL = (hy,...

wo ifh;=wgy, for1<j3<T

wp else

where w; is the class for objects and wq is the background class. An object is
detected only if it is accepted by each stage classifier. A stage classifier typically
extracts specific features from the region to be detected and then applies a
classification function to obtain a decision. Only samples which are not rejected
are passed to the next stage, such that each stage classifier changes the prior
probabilities of successive stages. Due to the structure of the discrete decision of
the cascade the detection rates of each classifier are multiplicative and therefore
adding more classifiers without adaptation of decision functions results in a
degradation of the detection performance. By using a Bayesian approach, the
prior probabilities of object and background classes can be tracked and the
stage classifier detection rates are maintained for the cascade classifier. The
prior probability for classes w; induced by a classifier h with output o(z) and
and its probability density function p is:
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with ¢ € {0,1} and with the set £2! for objects and 02° for background. For each
sample in £2¢ the output is accumulated in a frequency table over the output and
then normalized and stored which allows estimating p(o(z)|w;) and calculating
Pp, with a sum. The rule for updating the prior probabilities P;(w;) after the
classification with stage classifier h; is:

Pjpr(wi) = Pp; (wi) Pj(wi) 3)

where .le = ' and Q? = {z € 2°hc(z) = wi} are classified as objects
in stage j, therefore the complexity factors for samples are increasing at each
stage. The priors used in Eq. (3) correspond to the detection and false positive
rates [5] which is shown in Fig. 1(a). A more accurate but also computationally
more expensive way is to use Eq. (2) with the actual cascade h},. Initial prior
probabilities are set to one since optical transfer is identical for each sample. To
prevent vanishing prior probabilities, P(wy) = max(P(wp), Pmin) With P, ~
10~°. The final Bayes decision function is then given by:

(4)
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where o(z) is the output value and p;(o(z)|w;) is obtained from the frequency
table (see Eq. (2 ) above). Fig. 1(b) shows the feature extraction part followed

feature extraction ~ projection

w1 wo

Pjlw) Pj(wo)

reject reject

false neg true neg
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Fig. 1. 1(a): Change of prior probability induced by a stage classifier. 1(b): Extraction
of features and decision for a stage classifier. The upper row shows the decision with
a classical threshold perceptron while the lower row shows a frequency table used for
the decision and tracking of probabilities.

by the decision part which is the classical threshold decision function in the
upper row and the Bayes decision function modeled with a frequency table in
the lower row as described above. The feature extraction scheme and feature
types used are a combination of intensity based and structure tensor features
in combination with linear perceptrons [13] as described in [1]. The weights of
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the perceptron are computed based on Fisher LDA [6, 8] in combination with a
sequential forward selection of features [2] using the training set {£27, £2;} since
no external parameters are involved and the training procedure requires about 50
ms on average. Besides, it can be shown that it is directly related to a minimum
squared error procedure [7]. This training procedure is repeated for each new
stage j and stage classifiers are added until the prior probability of a negative
Py, (wo) approaches a value of 0.95. If this threshold is lowered, the training will
stop earlier resulting in a higher overall false positive rate.
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Fig. 2. First row: Frequency tables over the output values of stage classifiers 1 and 79
(see 2(a), 2(b)) out of T"= 211 with 64 bins. The blue bars are the calculated decision
values for a positive decision and black bars for a negative decision for each bin. Second
row: Frequency tables over the output of classical threshold perceptron classifier 1 and
65 (see 2(c),2(d)) out of T' = 81. The threshold is marked as a blue line. To enable more
precise positioning, 1024 bins are used. Green bars correspond to output belonging to
objects, red bars to output associated with background patches.

Fig. 2 shows frequency tables of stage classifiers. Green bars model the pdf
of positives and red bars model the pdf of negatives. In the first row blue bars
correspond to detected objects and black bars which are less than zero are rejec-
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tions (see Fig. 2(a) and 2(b)). Due to the modified prior probabilities the black
bars are close to zero in Fig. 2(b). The lower row shows the threshold decision
method. The blue line marks the computed threshold and all values to the right
of it are classified as objects. The two peaks in Fig. 2(a) and 2(c) near the out-
put 0.0 are due to homogeneous patches (e.g. sky) which are mapped to zero.
To determine the threshold, the frequencies are multiplied by their prior prob-
abilities and the threshold is placed at the point of minimum error. Comparing
Fig. 2(b) and 2(d), which correspond to stage classifiers 79 and 65, one can see
the advantage of the histogram-based decision which contains three positive de-
cision regions (two small additional regions near output 9.5 and 12.0) and four
negative, yielding a lower FPR than the threshold classifier which has a FPR of
approximately 99 %.

The Bayes approach described above can also be used for the effective com-
putation of confidences. For high frequencies the classifier is confident since it
has gathered a large number of evidences. If the frequencies of both classes are
high, there is a conflict and the confidence should be low. By using the prior
probabilities for each stage the confidences for negatives are decreasing since
it is increasingly likely to encounter positives in higher stages, resulting in a
confidence value:

71(h57x) =

Nl =
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3 Experimental Evaluation

The evaluation of different classifiers concerning the overall detection perfor-
mances is performed in Section 3.1, while in Section 3.2 additional confidence
measures which are compared to the confidence in Eq. (5) are suggested and
evaluated using two statistical methods.

3.1 Evaluation of Detection Performances

The training uses a set composed of 10000 grayscale images acquired from a test
vehicle and displaying US speed limit signs. The images show strongly varying
lighting conditions, the presence of cast shadows, as well as structures resulting
from the Bayer pattern of the utilized camera. Some typical examples are shown
in Fig. 3. The two-digit block with a small border and base widths ranging from
24 to 60 pixels are cut out and used for training, since the positioning of other
attributes like the words “speed” or “limit” are variable and additional plate
information is integrated into some signs. As training examples for the negative
background class wy, the images containing signs are scanned and all windows
ranging from 24 to 60 pixels which do not overlap any sign are collected, yield-
ing set sizes of 10815 positives and 5 x 10® negatives. For the stage classifiers
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the complexity of negative training samples increases since there are two digit
combinations, for example on road signs or billboards which can hardly be distin-
guished from the digits of a speed limit sign. Fig. 3 shows some typical examples

e
-

(1) &

Fig. 3. Speed limit signs acquired under difficult illumination conditions. The two-digit
block is used for the detector. The squared structure is induced by the Bayer pattern
of the camera.

Fig. 4. Normalized false positives for stage classifier 113 out of 118. The patches 4(c),
4(e) and 4(1) originate from images with two signs (left and right) where one has been
missed in the labeling process. The patch 4(k) represents the letters “E D” from “S P
E E D”.

displaying difficult illumination conditions whereas Fig. 4 shows normalized false
positives of stage classifier 113 out of 118 stages in total. Very similar patches
are classified as signs in high stages, even some patches from real signs which
were missed in the labeling process are detected by the classifier. Analyzing the
original images corresponding to the false positives, reveals that patches 4(c),
4(e) and 4(1) originate from images with two signs located at each side of the
street where one has been missed in the labeling process.

Different classifiers with Bayes decision functions differing in their number
of bins for the frequency tables have been trained. For evaluation, Receiver Op-
erating Characteristics (ROC) curves are constructed by successively removing
stage classifiers. We also determine the average computational burden of the de-
tection in milliseconds CPU time for scanning the image for signs over the false
positives. Fig. 5 shows the ROC curve with detection rates on the y-axis and
false positives per image (FPPI) on the x-axis on the left and the cost diagram
with average time per image in ms on the y-axis and FPPI on the x-axis. The
number of bins used for the frequency tables has different effects on the perfor-
mance. The prefix “FRQ” means that Bayes decision classifiers with frequency
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Fig. 5. ROC curves with detection rates (TPR) on the y-axis and false positives per
image (FPPI) on the z-axis. The cascades starting with FRQ contain frequency tables
with different numbers of bins. The cascade with ID FRQ-BC256_FS e.g. contains 256
bins and uses a finer sampling method. The threshold perceptron cascade with ID
THRESH terminates at 5 false positives per image.

tables are used and the number following “BC” corresponds to the number of
bins used. The classifier with ID FRQ_BC256 seems to mark a “sweet spot” since
the system performs at 43 Hz and the single image detection rates yield 93 %
and 0.2 FPPI scanning the whole image (752x480 pixels) on a single processor
with 3.3 GHz. Using a finer sampling, detection rates of of 97 % and 0.2 FPPI
are achieved running at 13 Hz (see FRQ-BC256_FS). The classical threshold
classifier has high detection rates but training stopped at 5 FPPI since the error
of the stage classifier was too high. The total number of classifiers used are:
FRQ-BC1024=87, FRQ_-BC512=159, FRQ_BC256=118, FRQ_BC256_FS=168,
FRQ-BC64=211, THRESH=81. This shows that very high detection rates are
obtained even for large numbers of stages. The bend appearing for nearly all
ROC-curves at low FPPIs can be explained by the fact that the stage classifier
encounters positive sign samples in the negative background set as described
above. The training times of each classifier vary, e.g. FRQ_BC256=25 hours and
FRQ-BC256_FS=29 hours.

3.2 Evaluation of Confidences

The evaluation of confidence measurements is done in two ways. The first method
uses the fact that the detector is statistically more confident on true positives
than on false positive detections. The idea is to accumulate the confidence values
for FPs and TPs over the whole range. Then the distribution of the confidence
values should be high around low values for false positive samples since the
detection is not correct and it should be high for large values for true positive
samples since the classifier should then be confident about its decision. To obtain
the statistics, around 6000 FPs and about 6000 TPs are gathered from the de-



8 A. Staudenmaier, U. Klauck, U. Kreflel, F. Lindner and C. Wohler

tector, the confidences are accumulated and the resulting histogram is equalized.
For comparison we introduce further confidence values:

T
o (hT ) = 3 [p; (o(2)|w1) Pj(w1) — pj(o(x)|wo) Pj(wo) ()

T pj(o(x)|w1)Pj(w1) + pj(o(x)|wo) Pj(wo)

j=1,hj=w1
T

WL =5 Y o)~ ”)

j=1,hj=w:

and their corresponding statistics are shown in Fig. 6. There it can be seen
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Fig. 6. Accumulated confidence values for true positives (green bars) and false positives
(red bars)
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Fig. 7. 7(a): Detection rates of 40 classifiers trained on 10 disjoint training sets con-
sisting of 1300 images each. Each point corresponds to a cascade classifier. The x-axis
denotes the subsets. 7(b): Statistical confidence values on the z-axis vs. the proposed
confidence measure according to (Eq. 5) on the y-axis using a logarithmic scale.
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Fig. 8. Visualization of confidence values. 8(a) and 8(b): Detections are visualized as
rectangles and their confidences are shown as vertical bars, sorted by decreasing order.
The most confident rectangle is colored green, all others are colored red. 8(c) and 8(d):
Merged windows obtained by linear combinations of confidence values.

clearly that the decision-based confidence according to Eq. (5) outperforms those
computed by a distance to the threshold (Eq. (7)) and the normalized version
(Eq. (6)) since the overlap between the distributions is smaller. The second
evaluation method is based on a statistically exact measurement of confidence
values [9] which states that for K classifiers trained on disjoint data sets an
exact confidence measure can be obtained by averaging the classifiers decisions.
For training of the cascades 10 disjoint sets consisting of 1300 images each were
used. To generate more diverse classifiers, four classifiers with different parame-
ters were trained per set. Then for a set of 6000 test signs the confidence values
obtained by averaging the 40 classifier decisions for each classification were com-
pared to the confidence v, from Eq. (5) generated by the single cascade with
ID FRQ_-BC256_FS from Fig. 5 with a logarithmic plot shown in Fig. 7(b). The
result shows that one cluster appears for positive and negative decisions, respec-
tively. Fig. 7(a) shows the detection performance of each single cascade trained
with the corresponding subset. The last evaluation is a visual inspection of the
confidence values of detected signs. Each detection of a sign is visualized as a
rectangle and its confidence value as a vertical bar. The bars are sorted by de-
creasing confidence and the rectangle with highest confidence is colored in green,
all others in red, as shown in Fig. 8(a) and 8(b). A movie consisting of 6000 im-
ages was generated and visually inspected. The “most confident” detection was
virtually always the central detection which is placed on the perfect digit block.
Another movie was generated with a merging algorithm that combines multiple
detection windows into one by means of confidence weighted linear combination
of the rectangles coordinates which is shown in Fig. 8(c) and 8(d).

4 Conclusion

This article presents a modular approach for an adaptive Bayesian classifier cas-
cade which was used in the real world detection of US speed limits. A method for
computing Bayes decision functions, which are known to be optimal, is proposed
which is applicable to cascaded structures by updating the prior probabilities
and modeling the probability density functions in an adaptive way independent
of the number and type of stage classifiers. In addition, different confidence val-
ues have been suggested and compared. The measure most closely related to
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the Bayes decision, yields the best performance. A merging algorithm combines
multiple detections into a single precise detection based on their confidence val-
ues. The overall single image detection rates aggregate to 97 % with 0.2 false
positives per image running at 13 Hz and 93 % with 0.2 false positives per image
running at 43 Hz for scanning the whole image.
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